The Beta Family

<u>1. The Periodic Building Unit (PBU) – 2. Type of Faulting – 3. The Layer Symmetry – 4. Connectivity Pattern – 5. Ordered End-Members – 6. Disordered Materials synthesized so far – 7. Supplementary Information 8. References</u>

1. The Periodic Building Unit (PBU) equals the layer shown in Fig.1 (a - c):

The PBU of the beta family of structure types, the tetragonal beta layer (a), is composed of T16 units (in bold) related by pure translations along a and b. Views along [001] (a), [010] (b) and [100] (c) are shown. The layers depicted in (b) and (c) (In parallel projection (top) and in perspective view (bottom)) are identical and related by a 90° rotation about the plane normal or by a mirror operation perpendicular to the plane normal.

2. Type of faulting: 1-dimensional stacking disorder of the PBU's along [001].

3. The planar space group symmetry of the PBU is $P(\overline{4})m2$.

4. Connectivity pattern of the PBU:

Neighbouring PBU's, related by a mirror operation, can be connected along [001] via Obridges in three different ways:

- a) the lateral shift of the top layer along *a* or *b* is zero, (this connection mode has not been observed yet)
- b) the lateral shift of the top layer is $\frac{1}{3} a$ or $\frac{1}{3} b$,
- c) the lateral shift of the top layer is $\frac{1}{3} a$ or $\frac{1}{3} b$,

denoted as a): (0,0); b): $(+^{1}/_{3},0)$ or $(0,+^{1}/_{3})$; c): $(-^{1}/_{3},0)$ or $(0,-^{1}/_{3})$.

Figure 2: Connectivity of neighboring PBU's via 6MR-6MR-4MR (a) and 6MR-5MR-5MR (b and c), respectively

Once the distribution of the lateral shifts between the layers stacked along [001] is known, the 3-dimensional structure is defined.

5. The simplest ordered end-members in the beta family are given below. None of them has been observed yet as pure single crystal material.

Figure 3: Projections of the structures of the simplest ordered end-members (cf. following table)

Figure 3cont.: Projections of the structures of the simplest ordered end-members (cf. following table)

End- Member	Lateral shifts between subsequent PBU's along [001]; shifts are in fractions of (a, and b)					Space group
1	(0,0);	(0,0);	(0,0);			P4 ₂ /mmc
2	(0,-1/3);	(- ¹ / ₃ ,0);	(0,-1/3);			P1 @*
3	(0, -1/3);	$(-1/_{3},0);$	(0,+1/3);	(- ¹ / ₃ ,0);	(0,-1/3);	P2/c @
4	$(-1/_{3},0);$	(0,-1/3);	(+1/3,0);	$(0,+^{1}/_{3});$	(- ¹ / ₃ ,0);	P4 ₁ 22 **
5	$(+^{1/}_{3},0);$	(0,-1/3);	$(-1/_{3},0);$	$(0,+^{1/3});$	(+ ¹ / ₃ ,0);	P4 ₃ 22 \$

Table 1: Stacking sequences of PBU for the simplest ordered end-members in the beta family. The end-member number refers to the structure plots 1-4 on the previous and this pages.

[@] Space group is centrosymmetric and the same structure is obtained by reversing the signs of all lateral shifts.

* For comparison reasons the maximum topological symmetry of end-member number 2 has been transformed from C2/c to PT.

** This is the end-member with structure type code *BEA.

^{\$} In P4₃22 the coordinates in P4₁22 are transformed to x y \overline{z} ; end-member numbers 4 and 5 are enantiomorphs.

6. Disordered materials synthesized and observed so far:

Beta (1,2,3), Borosilicate *BEA (4,5), Gallosilicate *BEA (5), Tschernichite (6)

7. Supplementary material

Simulation of the stacking disorder in the beta family: BEA-'Polymorph B'

Figure 4: Intensity (**I**, a.u.) of simulated powder patterns versus diffraction angle (**20**) of the BEA-'Polymorph B' series in steps of 10% intergrowth. The stacking sequences number **2** and **4** (cf. Table 1) are disordered. The 0% BEA pattern corresponds to the 100% 'Polymorph B' pattern.

8. References

(1)	R. L. Wadlinger, G. T. Kerr and E. J. Rosinski, US Patent 3,308,069 (1967).
(2)	A. Corma, M.T. Navarro, F. Rey, J. Rius, and S. Valencia, Angew. Chem., Int. Ed. 40, 2277(2001).
(3)	J. M. Newsam, M. M. J. Treacy, W. T. Koetsier and C. B. de Gruyter, Proc. R. Soc. Lond. A 420 , 375 (1988).
(4)	J. B. Higgins, R. B. LaPierre, J. L. Schlenker, A. C. Rohrman, J. D. Wood, G. T. Kerr and W. J. Rohrbaugh, Zeolites, 8 , 446 (1988).
(5)	M. Marler, R. Boehme and H.Gies, Proc. 9th IZC, Montreal, Butterworth-Heinemann (1993) p. 425.
(6)	K. S. N. Reddy, M. J. Eapen, P. N. Joshi, S. P. Mirajkar and V. P. Shiralkar, J. Incl. Phenom. Mol. Recogn. Chem. 20 , 197 (1994).
(7)	R. C. Boggs, D. G. Howard, J. V. Smith and G. L. Klein, Am. Mineral. 78 , 822 (1993).

 \bigtriangleup