Analcime

Si(68), Al(32)

Contributed by B. W. Garney

Verified by N. Evmiridis and F. Farzaneh

Type Material Na_x[Al_xSi_{48-x}O₉₆ :16 H₂O (x = 15 to 17)

Method Developed from J. F. Charnell [1], and A. Dyer, A. M. Yusof [2]

Batch Composition 4.5 Na₂O : Al₂O₃ : 4.5 SiO₂ : 3.0 H₂SO₄ : 380 H₂O : 6.1 triethanolamine ^a

Source Materials

ANA

demineralized water aluminum sulfate [General Purpose Reagent, Al₂(SO₄)₃ 16 H2O] sodium metasilicate (Technical Grade, Na₂SiO₃ 5 H₂O)

triethanolamine [General Purpose Reagent, N(C₂H₄OH)₃]

Batch Preparation (for approximately 7 g product) [3,4]

- (1) [55 g water + 9.8 g aluminum sulfate], stir until dissolved; filter through 0.7 micron glass microfibre filter
- (2) [36.5 g water + 14.9 g sodium metasiicate + 12.2 g triethanolamine], stir until dissolved; filter through 0.7 micron glass microfibre filter
- (3) [(1) + (2)], stir gently until gel thickens (do not over-stir)

Crystallization

Vessel: 150 mL Teflon-lined autoclave ^b Time: 24 hours Temperature: 200°C (autoclave heated in the oven) Agitation: none

Product Recovery

- (1) Cool to room temperature and filter to recover solids
- (2) Wash with distilled water until pH of filtrate < 10
- (3) De-agglomerate by adding 10 mL of 10% ethanol in water and immerse in a 150 watt ultrasonic bath for approximately 1 hour
- (4) Dry at 100°C
- (5) Yield: approximately 90%

Product Characterization

XRD: ANA (only crystalline phase) Elemental Analysis: 1.06 Na₂O : Al₂O₃ : 4.3 SiO₂ : 2 H₂O H₂O (Wt. loss at 500^oC): 8.29% (± 0.20) Na₂O: 14.6% (± 1.5) Al₂O₃: 22.7% (± 1.5) SiO₂: 57.3% (± 0.5) Crystal Size and Habit: polycrystalline non-porous spherulites ≤ 180 µm dia. [2]

References

- [1] J. F. Charnell, J. Cryst. Growth 8 (1971) 291
- [2] A. Dyer, A. M. Yusof, Zeolites 7 (1987) 191
- [3] B. W. Garney, Fusion Technology 21 (1992) 604
- [4] B. W. Garney, UK Patent Application 9011151.9

Notes

- a. This preparation gives the <u>non-porous</u> form of analcime. Replacing aluminum sulfate with an equivalent weight of sodium aluminate gives the <u>porous</u> form of analcime. Gel composition: 6.5 Na₂O : Al₂O₃ : 4.5 SiO₂ : 380 H₂O : 6.1 triethanolamine.
- b. The method of heating the gel is very important if large crystals are required. The largest crystals were obtained when the autoclave was placed in a laboratory oven where the heat flow was uniform all around the pot. Experiments using autoclaves which were heated by electrical jackets around the sides were not so successful.