The UTD-1 Family

The Periodic Building Unit (PerBU) - 2. Type of Faulting - 3. The Layer Symmetry

 Connectivity Pattern of the PerBU - 5. The simplest Ordered End-Members
 Disordered materials synthesized to date - 7. Supplementary Information - 8. References

1. The Periodic Building Units (PerBU1 and **PerBU2)** in the UTD-1 family equal the layers shown in Figure 1b and 1c. The layers are built from tubular pores of rolled-up honeycomb-like sheets of fused T6-rings with T14-ring windows as shown in Figure 1a.

Figure 1: Pore with T14-ring window (a) constructed from seven crankshaft chains (left) or from T6-ring bands each consisting of 28 T atoms (right); PerBU1 (b) and PerBU2 (c) of the UTD-1 family of zeolites seen in perspective view perpendicular to the plane normal n and along the pore axis b

Tubular pores (Fig.1a), related by pure translations along a_1 , are connected through double crankshaft chains of the feldspar type into PerBU1 (Fig.1b). Pores, related by pure translations along a_2 accompanied by a shift of $\frac{1}{2}b$ along the pore axis, are connected through double crankshaft chains of the narsarsukite type into PerBU2 (Fig.1c). [Compare these PerBU's with those in the ZSM-48 and SSZ-31 families].

2. Type of Faulting: 1-dimensional stacking disorder of the PerBU's along the plane normal *n*.

3. The Layer Symmetry: the plane space group of PerBU1 is P 1 $2_1/m$ (1) and of PerBU2 is C 1 2/m (1).

4. Connectivity Pattern of the PerBU's:

The stacking of PerBU's along *n* requires a lateral shift of the PerBU's along *a* (and *b*). It is convenient to describe the stacking sequence of the PerBU's along *n* using the same coordinate system in both PerBU's. Therefore the unit cell length along the *a* axis is taken equal to $2|a_1|$ in PerBU1 and equal to $|a_2|$ in PerBU2. For both PerBU's the lateral shifts along *a* are then given as $\pm^{1}/_{6}a$. Direct neighbouring PerBUs can be stacked along *n* in several ways. The lateral shift of the top layer along *a* and *b* is:

(a): $-\frac{1}{_6}a$ and zero; denoted as $(-\frac{1}{_6}, 0)$; (b): $\frac{1}{_6}a$ and zero; denoted as $(\frac{1}{_6}, 0)$; (c): $-\frac{1}{_6}a$ and $\frac{1}{_2}b$; denoted as $(-\frac{1}{_6}, \frac{1}{_2})$; (d): $\frac{1}{_6}a$ and $\frac{1}{_2}b$; denoted as $(\frac{1}{_6}, \frac{1}{_2})$.

According to the literature (1,3), UTD-1 materials donot exhibit regions where the PerBU's are stacked using the $(-1/_6, 0 \text{ or } 1/_2)$ and the $(+1/_6, 0 \text{ or } 1/_2)$ connection modes sequentially. Therefore, only connection modes (a) and (c) [or, equivalently, (b) and (d)] need to be considered.

Figure 2: Perspective view along the pore axis b of the connection modes (a) and (c) between PerBU1's in the UTD-1 family of zeolite frameworks. The PerBU1's are connected through double crankshaft chains of the feldspar- or narsarsukite-type depending on whether the shift along bbetween direct neighbouring pores is zero or 1/2b, respectively. The gaps between the pores are filled with T-T dimer units as shown in Figure 3 [Fig. 2 is continued on next page]

Figure 2 (Continued): Perspective view along the pore axis b of (left) the connection mode (c) between PerBU2's and (right) the connection mode (a) between stacking alternately PerBU1 and PerBU2. The PerBU's are connected through double crankshaft chains of the feldspar- or narsarsukite-type depending on whether the shift along b between direct neighbouring pores is zero or $1/_{2}b$, respectively. The gaps between the pores are filled with T-T dimers (See Fig.3)

Once the distribution of the lateral shifts between the PerBU's along n is known, the threedimensional structure is defined.

5. The Simplest Ordered End-Members in the UTD-1 family of zeolites are shown in Figure 3 and Table 1. Only end-member 1 (framework type code: DON (2,4)) has been observed as pure single crystal material so far.

Figure 3: Perspective drawing (left) and parallel projection along the pore axis of the unit cell in standard setting (top right) of the ordered end-member 1 with framework type code **DON** (cf. Table 1). (Fig.3 is continued on next page)

Figure 3 (Continued): Perspective drawing (left) and parallel projection along the pore axis of the unit cell in standard setting (top right) of the ordered end-members **2** and **3** (cf. Table 1) in the UTD-1 family. T-T connections to dimer units are striped. (Fig.3 is continued on next page)

Figure 3 (Final page): Perspective drawing (left) and parallel projection along the pore axis of the unit cell in standard setting (top right) of the ordered end-member 4 (cf. Table 1) in the UTD-1 family. T-T connections to dimer units are striped

Table 1: Stacking sequences of the PerBU's for the simplest ordered end-members in the UTD-1 family of zeolite frameworks. The end-member number refers to the framework plots **1-4** on this and previous pages. The standard setting $(a_{a}, b_{a} \text{ and } c_{a})$ of the space group is used

End- Member	Lateral shifts (along n) in fractions of (a, and b) ¹			space group	<i>a</i> ₀	b _{0} (Å)	C ₀	β (°)
PerBU1								
1 ²	$(-1/_{6}, 0);$	$(-1/_{6}, 0);$	(- ¹ / ₆ , 0);	Cmcm	18.89	23.37	8.41	-
2 ³	(-1/6, 1/2);	$(-1/_{6}^{0}, 1/_{2});$	$(-1/_{6}, 1/_{2});$	C2/m	29.87	8.41	14.94	101.3
PerBU2								
3 ⁴	$(-1/_6, 1/_2);$	$(-1/_6, 1/_2);$	(- ¹ / ₆ , ¹ / ₂);	Imma	18.94	8.41	23.10	-
PerBU1 and PerBU2								
4 ⁵	(- ¹ / ₆ , 0);	$(-1/_{6}, 0);$	(- ¹ / ₆ , 0);	$P2_1/m$	29.87	8.41	29.87	101.3

¹ a = 29.87 Å (See Fig.1 and Section 4); the pore axis b = 8.41 Å; n is parallel to $a \ge b$.

² End-member 1 equals polytype C with framework type code **DON** (1,2).

³ End-member **2** equals polytype **E** (3).

- ⁴ End-member **3** equals polytype $\mathbf{A}(1)$.
- ⁵ End-member **4** equals polytype **F** (3).

6. Disordered Materials Synthesized and Characterized to Date:

UTD-1 (1), UTD-1F (2)

7. Supplementary Information

7.1 Comparison with the ZSM-48 family:

The Periodic Building Units (PerBU1 and PerBU2) in the ZSM-48 family equal the layers shown in Figure 4b and 4c. The layers are built from tubular pores (Fig.4a) of rolled-up honeycomb-like sheets of fused T6-rings with T10-ring windows. [Compare these PerBU's (with T10-ring windows) with the PerBU's in SSZ-31 (with T12-ring windows) and in UTD-1 (with T14-ring windows)].

Figure 4: Tubular pore with T10-ring window (a) constructed from five crankshaft chains (left) or from T6-ring bands each consisting of 20 T atoms (right); PerBU1 (b) and PerBU2 (c) of the ZSM-48 family of zeolite frameworks seen in perspective view perpendicular to the plane normal n and along the pore axis b

For more details: see the description of the ZSM-48 family in this 'Catalog'.

7.2 Comparison with the SSZ-31 family:

The Periodic Building Units (PerBU1 and PerBU2) in the SSZ-31 family equal the layers shown in Figure 5b and 5c. The layers are built from tubular pores (Fig.5a) of rolled-up honeycomb-like sheets of fused T6-rings with T12-ring windows. [Compare these PerBU's (with T12-ring windows) with the PerBU's in ZSM-48 (with T10-ring windows and in UTD-1 (with T14-ring windows)].

Figure 5: Tubular pore with T12-ring window constructed from six crankshaft chains (left) or from T6-ring bands each consisting of 24 T atoms (right); PerBU1 (b) and PerBU2 (c) of the SSZ-31 family of zeolite frameworks seen in perspective view perpendicular to the plane normal n and along the pore axis b

For more details: see the description of the **SSZ-31** family in this 'Catalog'.

8. References

- (1) R.F. Lobo, M. Tsapatsis, C.C. Freyhardt, S. Khodabandeh, P. Wagner, C-Y. Chen, K.J. Balkus, S.I. Zones and M.E. Davis, J. Am. Chem. Soc. **119**, 8474 (1997).
- (2) T. Wessels, Ch. Baerlocher, L.B. McCusker and E.J. Creyghton, J. Am. Chem. Soc. **121**, 6242 (1999).
- (3) H. van Koningsveld, R.F. Lobo and M.M. Martinez-Inesta, Accepted for publication at the IUCr Congress (2004), Cape Town, South Africa.
- (4) Atlas of Zeolite Framework Types, p.116. Ch. Baerlocher, W.M. Meier and D.H. Olson, eds.. Fifth Rev. Ed., 2001, Elsevier. Amsterdam, London, New York.