AFI CoAPO-5 P(51), AI(45), Co(4)

Contributed by Myriam Uytterhoeven and An Verberckmoes

Verified by S. Ashtekar, P. Norby, J. Jänchen and H. van Breukelen

Type Material [CoAl₁₁P₁₂O₄₈]: wH_2O (w = 0.1 to 0.2)

Method M. G. Uytterhoeven, R A. Schoonheydt [1, 2]

Batch Composition 0.7 TriEA: (Co_{0.08}Al_{0.92}P)O₄: 20 H₂O

Source Materials

water (doubly distilled) phosphoric acid (Janssen Chimica, 85% H₃PO₄) cobalt nitrate, Co(NO₃)₂. 6 H₂O (Janssen Chimica) pseudoboebmite (Catapal, Vista, 70% Al₂O₃ triethylamine (TriEA) (Janssen Chimica 99%)

Batch Preparation (for 27 g product)

- (1) [62.6 g water + 23.06 g phosphoric acid], mix; chill to 0;C
- (2) [(1) + 4.66 g cobalt nitrate], stir until dissolved
- (3) [(2) + 13.4 g pseudoboehmite], add alumina under continuous stirring
- (4) [(3) + 14.3 g TriEA], add amine under continuous stirring; a stir for one additional hour. Initial pH ~3

Crystallization

Vessel: stirred, Teflon-lined autoclave

Temperature: 200°C Time: 24 hours

Agitation: Stirring is essential.^b Autoclaves were "tumbled" (end-over-end) in the

oven

Product Recovery

- (1) Filter and wash with distilled water; dry at room temperature
- (2) Yield: near 100% on T-atom basis

Product Characterization

XRD: pure AFI, CHA impurity when present is evidenced by a line at $9.5_{i}(2q)^{c}$ Elemental Analysis: 0.10 TriEA. ($Co_{0.086}Al_{0.892}P_{1.000}O_{4}$) 0.13 H₂O^d Crystal Size and Habit: agglomerates formed by hexagonal platelets, regularly shaped (spherical or diabolo-shaped) with dia. = $55 \mu m^{e,f}$

References

- [1] M. G. Uytterhoeven, R. A. Schoonheydt, Micropor. Mater. 3 (1994) 265
- [2] M. G. Uytterhoeven, R. A. Schoonheydt, Proc. Ninth Int. Zeo. Conf., R von Ballmoos, J. B. Higgins, M. M. J. Treacy (eds.), Butterworth-Heinemann, Boston, 1993, p. 329

Notes

- a. TriEA addition causes an exothermic reaction; the preparation should be performed at 0°C and TriEA added drop by drop under careful temperature control.
- b. Under static conditions, co-crystallization of CHA is more probable.
- c. The co-crystallization of CHA can be suppressed by reducing the amine content and/or decreasing the cobalt content. The latter requires an increase of the Al content so that [Al + Co = P].
- d. On T-atom basis, the product composition is almost equal to the gel composition. Al + Co = P should be approximately achieved.
- e. SEM is suited to distinguish between AFT and much smaller CHA crystals.
- f. At low cobalt content (e.g., Co_{0.02}Al_{0.98}P_{1.00}), single crystals are formed, shaped as hexagonal bars. Twinning can occur. Increasing cobalt content causes agglomeration giving larger, regular agglomerates. At high cobalt content (for example, Co_{0.08}Al_{0.92}P_{1.00}) single crystal formation can be achieved by increasing dilution and increasing template content, although the latter favors the co-crystallization of CHA.