EAB

Contributed by Rosario Alello and Flaviano Testa

Verified by B. Schoeman and by B. Subotic

Type Material [Na_{6.84}(TMA)_{3.05}] [(AlO₂)_{9.25}(SiO₂)_{26.75}]. 17.12 H₂O ^a (TMA = tetraxnethylainmonium)

Method R. Aiello, R. M. Barrer [1]

Batch Composition 5 (TMA)₂O : 3 Na₂O : Al₂O₃:15 SiO₂ : 500 H₂O

Source Materials

distilled water tetramethylammonium hydroxide (Fluka, purum, 25% aqueous solution) sodium hydroxide (Carlo Erba, pellets, reagent grade, 30% aqueous solution) alumina (Pfaltz and Bauer, Al(OH)₃, 65% Al₂O₃) silica (Sigma, fumed, 99+% SiO₂)

Batch Preparation (for 1.4 g dry product)

- (1) [13.78 g water + 9.10 g tetramethylammonium hydroxide solution + 2.00 g sodium hydroxide solution], mix until dissolved
- (2) [(1) + 0.39 g alumina], mix until homogeneous
- (3) [(2) + 2.25 g silica], mix thoroughly

Crystallization

Vessel Teflon container Time: 14 days Temperature: $80 \pm 2^{\circ}C$ Agitation: container is rotated

Product Recovery

- (1) Filter and wash thoroughly
- (2) Dry at ambient temperature
- (3) Yield: near 100% on Al₂O₃

Product Characterization

XRD: EAB (only phase observed); competing phase: FAU (trace sometimes present) ^b

Elemental Analyses: (Na₂O)_{0.74}: ((TMA)₂O)_{0.33} Al₂O₃ 5.74 SiO₂ ^c Crystal Size and habit: 1-2 μm faceted spherulites ^{d,e}

Reference

[1] R. Aiello, R. M. Barrer, J. Chem. Soc. A (1970) 1470

Notes

a. Excess cations attributed to SiO⁻ fragments in the framework.

- FAU traces were observed from systems with lower TMA/Na ratio and with lower b. H₂O content.
- As reported in Ref. [1] for samples obtained both from batches with Na⁺/ (TMA)⁺ = 0.5/0.5 and 0.2/0.8. C.

d. TMA⁺ could not be removed by NaNO₃ exchange.
e. By thermal analysis, water is first lost endothermally, followed by exothermal oxidative decomposition of TMA⁺.