Contributed by Rosario Alello and Flaviano Testa

Verified by B. Schoeman and by B. Subotic

Type Material $\left[\mathrm{Na} 6.84(\mathrm{TMA})_{3.05}\right]\left[\left(\mathrm{AlO}_{2}\right) 9.25\left(\mathrm{SiO}_{2}\right)_{26.75}\right] .17 .12 \mathrm{H}_{2} \mathrm{O}^{\mathrm{a}}(\mathrm{TMA}=$ tetraxnethylainmonium)

Method R. Aiello, R. M. Barrer [1]

Batch Composition $5(\mathrm{TMA})_{2} \mathrm{O}: 3 \mathrm{Na}_{2} \mathrm{O}: \mathrm{Al}_{2} \mathrm{O}_{3}: 15 \mathrm{SiO}_{2}: 500 \mathrm{H}_{2} \mathrm{O}$

Source Materials

distilled water
tetramethylammonium hydroxide (Fluka, purum, 25% aqueous solution)
sodium hydroxide (Carlo Erba, pellets, reagent grade, 30\% aqueous solution)
alumina (Pfaltz and Bauer, $\mathrm{Al}(\mathrm{OH})_{3}, 65 \% \mathrm{Al}_{2} \mathrm{O}_{3}$)
silica (Sigma, fumed, $99+\% \mathrm{SiO}_{2}$)
Batch Preparation (for 1.4 g dry product)
(1) $\quad[13.78 \mathrm{~g}$ water +9.10 g tetramethylammonium hydroxide solution +2.00 g sodium hydroxide solution], mix until dissolved
(2) [(1) +0.39 g alumina], mix until homogeneous
(3) [(2) +2.25 g silica], mix thoroughly

Crystallization

Vessel Teflon container
Time: 14 days
Temperature: $80 \pm 2^{\circ} \mathrm{C}$
Agitation: container is rotated

Product Recovery

(1) Filter and wash thoroughly
(2) Dry at ambient temperature
(3) Yield: near 100% on $\mathrm{Al}_{2} \mathrm{O}_{3}$

Product Characterization

XRD: EAB (only phase observed); competing phase: FAU (trace sometimes present) ${ }^{\text {b }}$
Elemental Analyses: $\left(\mathrm{Na}_{2} \mathrm{O}\right) 0.74$: ((TMA) $\left.)_{2} \mathrm{O}\right)_{0.33}: \mathrm{Al}_{2} \mathrm{O}_{3}: 5.74 \mathrm{SiO}_{2}{ }^{\mathrm{c}}$
Crystal Size and habit: 1-2 $\mu \mathrm{m}$ faceted spherulites ${ }^{\mathrm{d}, \mathrm{e}}$

Reference

[1] R. Aiello, R. M. Barrer, J. Chem. Soc. A (1970) 1470

Notes

a. Excess cations attributed to SiO^{-}fragments in the framework.
b. FAU traces were observed from systems with lower TMA/Na ratio and with lower $\mathrm{H}_{2} \mathrm{O}$ content.
c. As reported in Ref. [1] for samples obtained both from batches with $\mathrm{Na}^{+} /(\mathrm{TMA})^{+}=$ 0.5/0.5 and 0.2/0.8.
d. TMA ${ }^{+}$could not be removed by NaNO_{3} exchange.
e. By thermal analysis, water is first lost endothermally, followed by exothermal oxidative decomposition of TMA ${ }^{+}$.

