Contributed by Don Hopkins
Verified by V. Valtchev, M. Castagnola and G. Kuhl
Type Material $\mathrm{Na}_{9.2}(\mathrm{TMA})_{0.8}\left[\mathrm{Al}_{10} \mathrm{Si}_{14} \mathrm{O}_{48}\right]$ (TMA = tetramethylammonium)
Method G. T. Kerr [1]
Batch Composition $1.55 \mathrm{Na}_{2} \mathrm{O}: \mathrm{Al}_{2} \mathrm{O}_{3}: 3.91 \mathrm{SiO}_{2}: 4.13(\mathrm{TMA})_{2} \mathrm{O}: 320 \mathrm{H}_{2} \mathrm{O}$

Source Materials

distilled water
sodium hydroxide (50\% solution)
sodium aluminate ($\sim 46 \% \mathrm{Al}_{2} \mathrm{O}_{3}, 31 \% \mathrm{Na}_{2} \mathrm{O}$; Fisher, MC\&B, Nalco)
tetramethylammonium hydroxide (TMA-OH, Southwestern Analytical Chemical, 25\% aqueous solution)
silica sol (Dupont HS-40 or AS-40, $40 \% \mathrm{SiO}_{2}$)
Batch Preparation (for 34 g product)
(1) $\quad[290 \mathrm{~g}$ water +6.0 g sodium hydroxide solution +21.5 g sodium aluminate], stir until dissolved
(2) [292 g TMA-OH (25% solution $)+57.0 \mathrm{~g}$ silica sol], stir for approximately 30 minutes
(3) $[(1)+(2)]$, stirvigorously; gel $\mathrm{pH}=14.0$ to 14.5

Crystallization

Vessel: Teflon bottle, 1000 mL
Incubation: 24 hours at $25^{\circ} \mathrm{C}$ (optional)
Temperature: $100^{\circ} \mathrm{C}$ (oven with efficient air circulation)
Time: 16-48 hours
Agitation: none

Product Recovery ${ }^{\text {a }}$

(1) Filter and wash with 0.5 to 1 L water
(2) Dry at $100^{\circ} \mathrm{C}$
(3) Yield: approximately $34 \mathrm{~g}\left(100 \%\right.$ on $\left.\mathrm{Al}_{2} \mathrm{O}_{3}\right)$

Product Characterization

XRD LTA, $a_{0}=24.38 \AA$; competing phases: GIS (long reaction time) and EAB ${ }^{\text {b }}$ Elemental Analysis (dried at $100^{\circ} \mathrm{C}$): $15.7 \% \mathrm{Al}\left(29.7 \% \mathrm{Al}_{2} \mathrm{O}_{3}\right), 23.1 \% \mathrm{Si}(49.4 \%$ SiO_{2}), $12.4 \% \mathrm{Na}\left(16.7 \% \mathrm{Na}_{2} \mathrm{O}\right), 2.24 \% \mathrm{C}\left(3.83 \%(\mathrm{TMA})_{2} \mathrm{O}\right)^{\mathrm{c}}$
Crystal Size and Habit: cubes (some with penetration twinning) approximately 1.0$1.5 \mu \mathrm{~m}$ on an edge

References

[1] G. T. Kerr, Inorg. Chem. 5 (1966) 1537
[2] R. H. Jarman, M. T. Melchior, D. E. W. Vaughan, ACS Symposium Series 218, American Chemical Soc., Washington, D. C., 1983, p 267

Notes

a. Although no decomposition of TMA-OH is expected, it is advisable to carry out the crystallization and product work-up in a fume hood. Temperature excursions can produce noxious and toxic by-products, e.g., trimethylamine and methanol.
b. EAB can co-precipitate with $\mathrm{ZK}-4$ if the TMA-OH is added to solution (1) before the silica sol.
c. \quad The $\mathrm{Si} / \mathrm{Al}$ of products by this recipe ranged from 1.39 to 1.43 (average 1.41). Higher and lower Si/Al products have been made using other recipes. [2]

