Contributed by Günter Kühl

Verified by S. Mintova and Zhaolan

Type Material Na₄(TMA)₂[Al₆Si₁₈O₄₈] (TMA = tetramethylammonium)

Method G. H. Kühl [1]

Batch Composition 1.07 Na₂O : 2.37 (TMA)₂O : Al₂O₃ : 10 SiO₂ : 120 H₂O

Source Materials

LTA

distilled water sodium aluminate (MCB, 28.5% Na₂O, 42.75% Al₂O₃) tetramethylammonium hydroxide solution (25% TMAOH) ^a precipitated silica (PPG Corp. Hi-Sil 233, 88% SiO₂) ^b

Batch Preparation (for 36 g product)

- (1) (46.4 g water + 15.6 g sodium aluminate], stir at room temperature until dissolved c
- (2) [(1) + 111.7 g tetramethylammonium hydroxide solution], mix
- (3) (2) + 44.5 g precipitated silica], add silica to the aluminate solution gradually with stirring ^d
- (4) Stir or blend for 30 minutes ^d

Crystallization

Vessel polypropylene bottle Incubation: 48 h at room temperature Time: 24- 30 hours ^e Temperature: 90°C Agitation: none

Product Recovery

- (1) Dilute reaction mixture with water
- (2) Filter on a dense filter, such as Whatman #5, or separate by decantation, then reslurry sediment, flocculate,^f and and wash with water ^g
- (3) Dry at room temperature or at 110°C
- (4) Yield: 36 g (near 100% on Al_2O_3)

Product Characterization

XRD: LTA (contracted unit cell); competing phase: high-silica sodalite Elemental Analyses: 0.6 Na₂O : 0.4 (TMA)₂O : Al₂O₃ :6 SiO₂ Crystal size and habit: cubes, <1 μ m on edge

Reference

[1] G. H. Kühl, US Patent 4 191 663

Notes

- a. TMA salts cannot be used because the anions tend to cause nucleation of high-silica sodalite ($SiO_2/Al_2O_3 = 10$).
- b. Hi-Sil 233 has a median particle size of 18-19 μm; precipitated silica of larger particle size tends to be insufficiently reactive. Ultrasil 320 is an acceptable substitute. If less reactive silica is to be used in this preparation, 10% of the silica should be slurried in the (TMA)OH solution prior to combining the (TMA)OH with the NaAlO₂ solution.
- c. Small amounts of iron may be removed by filtration although this iron does not affect the crystallization. If the sodium aluminate does not dissolve completely, it probably contains AI(OH)₃ and cannot be used.
- d. Slow addition of Hi-Sil is recommended for proper dispersion. Silica-rich gel particles tend to cause nucleation of high-silica sodalite.
- e. The longer crystallization time improves the crystallinity, unless sodalite nuclei are present.
- f. Avoid flocculating in the presence of mother liquor because colloidal silica will coagulate.
- g. Alternatively, use repeated decantation and reslurrying sequences (settling may be accelerated by centrifuging), and optionally, flocculation ^h after having removed the bulk of the alkalinity.
- h. See Introductory Article on "Product Recovery."