OFF

Linde Type T

Si(78), AI(22)

Contributed by Andrzej Cichocki

Verified by S. Khvoshchev, M. Shubaeva, J. Warzywoda, J. Parise, M. Kleinsorge, S. Park and C. Liu

Type Material Na_{2.9}K_{5.4}[Al_{8.3}Si_{27.7}O₇₂] . wH₂O (w ~7)

Method A. Cichocki, P. Koscielniak [1, 2]

Batch Composition 4.18 Na₂O : 1.25 K₂O : Al₂O₃ : 16.5 SiO₂ : 175 H₂O

Source Materials

distilled water sodium hydroxide (97% NaOH) potassium hydroxide (86% KOH) silica sol (Rudniki Chemical Works, 29.5% SiO₂, 0.2% Na₂O) sodium aluminate solution (26.6% Al₂O₃ 19.6% Na₂O) = NaAlO₂

Batch Preparation (for 14 g dry product)

- (1) [9.57 g water + 4.67 g sodium hydroxide + 3.24 g potassium hydroxide], dissolve and cool to room temperature
- (2) [67.0 g silica sol + (1)], mix in a porcelain mortar and stir for 2 minutes ^a
- (3) [(2) + 7.64 g sodium aluminate solution], add NaAlO₂ drop by drop to the stirred silicate over a 10 min. interval and continue stirring for 20 minutes

Crystallization

Vessel: stainless steel autoclave, 120 cm³ capacity

Aging: 24 h at room temperature

Temperature: 140°C

Time: 7 days Agitation: none

Product Recovery

- (1) Cool; transfer the reaction mixture to a mortar and grind
- (2) Filter and wash in a Buechner funnel until pH of the filtrate is 10
- (3) Dry at 110°C
- (4) Equilibrate in laboratory air for a few days
- (5) Yield: near 95% on Al₂O₃ and 41.5% on SiO₂ b

Product Characterization

XRD pure OFF ^c competing phases: PHI, CHA, LTL ^d Elemental Analysis: 0.35 Na₂O : 0.65 K₂O : Al₂O₃ : 6.65 SiO₂

Crystal Size and Habit: rods and "bones" type crystals \sim 9 μ m long on average (longest \sim 22 μ m)

References

- [1] A. Cichocki, P. Koscielniak, M. Michalik, M. Bus, Zeolites 18 (1997) 25
- [2] A. Cichocki, P. Koscielniak, Micropor. Mesopor. Mater. 29 (1999) 369
- [3] A. Cichocki, Zeolites 11(1991) 758
- [4] R. Aiello, R. M. Barrer, J. Chem. Soc. 1970 (A), 1470

Notes

- a. The use of a porcelain mortar gives a good mix of the reagents, particularly aluminate and silica sol.
- b. 39.9% of the sum of Na₂O, K₂O, Al₂O₃ and SiO₂ masses introduced into the reaction mixture. Synthetic Erionite with SiO₂/Al₂O₃= 6.55 forms from a reaction mixture of composition 8.09 Na₂O: 2.38 K₂O: Al₂O₃: 27.0 SiO₂: 448 H₂O when crystallization is carried out in a stainless steel autoclave at the temperature 373 K and time 7 days, but the yield is reduced to 22.5%. This composition differs slightly from that given in ref. [3] where NaOH and KOH were assumed 100%.
- c. The Na/K-system synthetic product shows domains of erionite and offretite in a single crystal. The XRD pattern agrees with natural offretite (PDF), but the product shows adsorption properties erionite. Unfaulted erionite crystallized in the Na/Me₄N-system. [41
- d. Formation of PHI is favored by decreasing relative alkalinity (OH-/SiO₂). Decreasing the temperature of crystallization favors CHA. Increasing relative alkalinity leads to formation of LTL.