SUZ-4

$\mathrm{Si}(86), \mathrm{Al}(14)$

Contributed by Geoffrey L Price

Verified by M. Camblor, P. Piccione and E. Creyghton
Type Material: $\mathrm{Kx}(\mathrm{TEA}) 5-\mathrm{x}\left[\mathrm{Al}_{5} \mathrm{Si}_{31} \mathrm{O}_{72}\right] \cdot \mathrm{WH}_{2} \mathrm{O}(\mathrm{TEA}=$ tetraethylammonium $)$
Method: G. L Price
Batch Composition $7.35 \mathrm{~K}_{2} \mathrm{O}: \mathrm{Al}_{2} \mathrm{O}_{3}: 33.3 \mathrm{SiO}_{2}: 3.10(\mathrm{TEA})_{2} \mathrm{O}: 681 \mathrm{H}_{2} \mathrm{O}$

Source Material

distilled, deionized water
potassium hydroxide (Fisher A.C.S. pellets, $86 \% \mathrm{KOH}$)
aluminum pellets (Aldrich, 99.99+\% AI)
tetraethylammonium hydroxide (Aldrich aqueous solution, 35\% TEA-OH)
silica sol (Dupont Ludox AS-40, ammonium stabilized, $40 \% \mathrm{SiO}_{2}$)

Batch Preparation (for 13 g dry product) ${ }^{\text {a }}$

(1) $\quad[33.98 \mathrm{~g}$ water +6.709 g potassium hydroxide], stir until dissolved
(2) [(1) +0.3776 aluminum pellets], stir overnight or until Al pellets dissolve completely in a loosely capped plastic bottle (hydrogen gas evolved)
(3) [18.226 g tetraethylammonium hydroxide +35.00 g silica sol +29.04 g water]. Stir together
(4) $[(2)+(3)]$, mix well

Crystallization

Vessel: 200 mL stainless steel autoclave
Temperature: $150^{\circ} \mathrm{C}$
Time: 4 days
Agitation: rotated autoclave ${ }^{\text {a }}$

Product Recovery

(1) Cool to ambient temperature; decant and discard liquid
(2) Wash with water to $\mathrm{pH}<10$
(3) Dry at $100^{\circ} \mathrm{C}$
(4) Yield: near 100% on $\mathrm{Al}_{2} \mathrm{O}_{3}$

Product Characterization

XRD: strong SUZ-4 [1, 2]; competing phases MOR ${ }^{\text {b }}$ plus an unidentified phase ${ }^{\text {c }}$
Elemental analysis: wt\% Si36, Al5.5, K1.5
Crystal size and habit: rods, $0.1 \mathrm{~m} \mu$ dia. x $1 \mathrm{~m} \mu$ long

References

[1] S. L Lawton, J. M. Bennett, J. L Schlenker, M. J. Rubin, J. Chem. Soc., Chem. Commun.(1993) 894
[2] D. B. Lukyanov, V. L. Zholobenko, J. Dwyer, S. A. I. Barri, W. J. Smith, J. Phys. Chem B 103 (1999) 197

Notes

a. This preparation has been successfully scaled up to a one-liter stirred autoclave.
b. Na+ level too high.
c. Produced by inadequate agitation during crystallization. XRD lines observed at $14.0^{\circ}(2 \theta) \mathrm{m}, 22.8^{\circ} \mathrm{ms}, 28.3 \mathrm{~s}, 29.8^{\circ} \mathrm{ms}, 30.6 \mathrm{~m}$ and 40.9 mw . $22.8^{\circ} \mathrm{ms}, 28.3 \mathrm{~s}, 29.8^{\circ} \mathrm{ms}, 30 \mathrm{~m}$ and 40.9 mw .

